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Abstract 
Purpose: To investigate the feasibility of the Log-Demons deformable image 

registration (DIR) method to correct eddy current and Echo Planar Imaging (EPI) 

distortions while preserving diffusion tensor information. 

Methods:    A phantom MR scan was conducted using a diffusion phantom scan 

(Diffusion Phantom Model 128, High Precision Devices, Inc) on a clinical 3T scanner. 

The scan includes a standard T1-weighted scan and a 20-direction diffusion tensor 

imaging (DTI) scan, which consists of one data set with b=0s/mm2 and twenty diffusion-

weighted data sets with b=1,000s/mm2.  A Log-Demons DIR algorithm was applied to 

the DTI images for eddy current and EPI distortion correction based on the b=0s/mm2 

and T1 weighted data sets and compared the eddy current and EPI distortion 

corrections along the phase encoding direction by affine and demons DIR algorithms. 

The Log-Demons framework is optimized based on both similarity and regularization. 

The registered images were analyzed using Cross-correlation (CC)  and mutual 

information (MI)  to assess the performances of distortion corrections by the DIR 

methods. Quantitative deviations from the original data after correction were also 

evaluated using the mean, and root mean square error (RMSE) for thirteen regions of 

interest in the Apparent Diffusion Coefficient (ADC) and Fractional Anisotropy (FA) 

maps.  
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The Log-Demons DIR algorithm was then applied to the MASSIVE dataset, 

which provides diffusion-weighted volumes divided into four sets with both positive (+) 

and negative(-) diffusion gradient directions and both AP and PA phase encoding 

directions. The registered images were analyzed using the mutual information (MI) and 

the absolute mean difference of two images with opposing gradient directions to assess 

the performances of distortion corrections by the DIR methods. Images with opposing 

gradient directions were compared when comparing eddy current distortions and 

images with opposing phase encoding directions were compared for EPI distortions. 

Results:  In the phantom study, the MI and CC were improved by 2.15%,0.89%, 

and 39.39% compared to no correction, and affine, and demons algorithm respectively 

when correction for eddy current distortions. MI and CC were improved by 8.89%, 

9.33%, and 9.20% compared to no correction, and affine, and demons algorithm 

respectively when correction for EPI distortions. Analysis of the tensor metrics using 

percent difference and the RMS of the ADC and FA found that the Log-Demons 

algorithm outperforms the other algorithms in terms of preserving diffusion 

information. 

In the MASSIVE study, the Log-demons DIR method outperformed the demons 

algorithm in terms of MI but underperformed compared to the affine registration for 

both eddy current and EPI distortions corrections. The absolute mean difference was 

decreased by 2.94%, 0.44%, and 1.53% compared to no correction, and affine, and 
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demons algorithm respectively when correcting for eddy current distortions, and 

decreased by 0.39%, 8.03%, and 13.19% compared to no correction, and affine, and 

demons algorithm respectively when correcting for EPI distortions.  

Conclusion: This work indicates that the Log-Demons DIR algorithm is feasible 

to reduce eddy current and EPI distortions while preserving quantitative diffusion 

information.  Although demonstrated with a DTI phantom study and brain study, this 

method could be extended for areas in which diffusion-weighted imaging is beneficial. 
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1. Introduction  
Diffusion-Weighted (DW) magnetic resonance (MR) imaging provides image 

contrast that differs from conventional MR techniques by producing image contrast that 

is dependent on the molecular motion of water. Diffusion Tensor Imaging (DTI) is a 

powerful tool to characterize the magnitude, anisotropy, and orientation of the diffusion 

tensor. DTI is used to quantify three-dimensional (3D) spatial properties of water 

molecular diffusion processes, and as such probe tissue structure at a microscopic scale. 

Because DTI provides both anatomical and functional information it is a valuable tool to 

analyze the radiation-induced changes involved in radiation therapy treatments [2]. 

Because DW-MRI often uses a fast echo-planar imaging (EPI) technique, 

geometric distortions caused by susceptibility variation and eddy-currents are generally 

associated with diffusion-weighted images. Distortion correction is crucial to ensure an 

accurate analysis of the treatment response of radiation therapy. 

1.1 MR Image Acquisition 

Magnetic Resonance Imaging (MRI) is a non-ionizing imaging modality that 

takes advantage of the magnetic moments of protons within the body and their response 

to an external magnetic field [3]. MR signal is a small electric current induced in the 

receiving coil by the precession of the net magnetization of a region during resonance.  

The signal from the radio-frequency (RF) pulse has the form of either a free induction 

decay or echo. Voxels containing different materials have different spin densities and 
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relaxation times that produce different signal intensities. This difference in signal 

intensity. MR scanners can use differences in frequency, phase, and timing to 

localize information from each voxel that produces its own MR signal. In spin-echo 

imaging sequences, the repetition time (TR) and the echo time (TE) are manipulated 

to control the contrast of the MR image. The overall signal intensity of a spin-echo 

(SE) sequence can be expressed by: 

𝑆𝑆𝑆𝑆ρ𝐻𝐻�1 − 𝑒𝑒𝑇𝑇𝑇𝑇/𝑇𝑇1�e−𝑇𝑇𝑇𝑇/𝑇𝑇2 1.1 

For the purposes of this work, we will cover the relevant imaging sequences for this 

study. 

1.1.1 T1 Weighted Imaging 

A "T1" weighted SE sequence is designed to produce contrast principally based 

on the T1 characteristics of tissues. These images are achieved by using a short TR to 

maximize the differences in longitudinal magnetization recovery, and a short TE 

minimizes the T2 decay. The most intense signal in T1 weighted images is fat, followed 

by white matter, gray matter, and cerebral spinal fluid (CSF).  
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Figure 1.1: Representative image of an axial slice of T1 weighted brain scan 

 

1.1.2 T2 Weighted Imaging 

T2 weighted images utilize a long TR and TE to reduce T1 differences and 

emphasize the T2 differences. A T2 weighted image is often produced by an initial 

proton density-weighted echo followed by a second echo generated by a 180° of a long 

TR spin-echo pulse sequence. T2-weighted images have a higher tissue contrast 

compared to T1 weighted images.  
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Figure 1. 2: Representative image of an axial slice of T2 weighted brain scan 

1.1.3 Diffusion-Weighted Imaging 

Diffusion relates to the random thermal motion of water molecules within a 

tissue.  Cellular structures of different tissues produce varying anisotropic, directionally 

Figure 1.3: gradient separation(Δ). 

Figure 1.3 Pulse sequence diagram for DW acquisition showing that two 
diffusion gradients (blue) are added to either side of the refocusing pulse. The 

diffusion weighting factor, b. is dependent on the diffusion gradient 
amplitude(G), the duration of the diffusion gradient (δ), and the diffusion 
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dependent motion of water.  Modern DWI techniques originate from the pulsed 

gradient spin echo (PGSE) technique develops by Stejskal and Tanner in 1964[4].  DWI 

sequences use two symmetric strong gradients on either side on the refocusing pulse to 

produce signal differences based on the restriction and directional of diffusion. 

If enough time is allowed for diffusion, intracellular water motion may be 

restricted leading to a lower apparent diffusion coefficient (ADC) within a region of 

interest [5]. Diffusion-weighted contrast can be models by the exponential 

𝑆𝑆𝑖𝑖 = 𝑆𝑆0 ⋅ 𝑒𝑒−𝑏𝑏⋅𝐴𝐴𝐴𝐴𝐶𝐶𝑖𝑖 1.2 

Where 𝑆𝑆𝑖𝑖 is  the  DW  signal  intensity  from  a  voxel  within  the  diffusion-

weighted image, 𝑆𝑆0 is the signal intensity of the voxel without the diffusion sensitizing 

gradient applied, 𝐴𝐴𝐴𝐴𝐶𝐶𝑖𝑖  is the apparent diffusion coefficient (described in section 1.2.1), 

and bis a factor that is determined by the strength, duration, and spacing of a 

rectangular gradient pulse and is represented by the equation, 

𝑏𝑏𝑖𝑖,𝑗𝑗 = γ2𝐺𝐺𝑖𝑖𝐺𝐺𝑗𝑗[δ2(Δ − δ/3)] 1.3 

Where γ is the gyromagnetic ratio.  The units of b are s/mm2, which is reciprocal 

of the units of the ADC. A typical b-parameter strength is 1000s/mm2.  The ADC value 

relates to the rate of water diffusion within a tissue which also has an effect of the signal 

strength within a diffusion-weighted image [6] These sequences allow clinics to 

differentiate normal tissues from cancer and damaged tissue due to the differences in 

water mobility. 
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Figure 1.4: Representation of DWI images. Representative images of  DWI  
images.   Image A  was acquired with an applied b-value of  0s/mm2.  Image  B  was  
acquired  with  an  applied  b-value  of 1000s/mm2 

The clinical applications of DWI have shown promise in predicting and 

evaluating pathophysiology and is an indicator for early detection of ischemic injury. 

DWI and DTI are becoming useful tools to assess treatment response in radiation 

therapy. 

1.2 Diffusion Tensor Imaging 

Diffusion Tensor Imaging (DTI) is used often for the characterization of white 

matter (WM) in patients with brain lesions [7]. DTI maps help localize the white matter 

tracts that are important for critical functions such as motion, language, and vision that 

may be affected by the tumor or radiation therapy treatments [2][8]. 

Variations in diffusion-weighted signals due to the anisotropy of the region of 

interest can become an issue for clinical interpretation. For routine DWI acquisitions, the 

complexity is often ignored, and the ADC is taken as the single average value. If at least 

6 diffusion encoding gradients are applied to the volume in noncollinear directions 
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along with a b=0s/mm2 volume, the diffusion tensor can be calculated [6]. A diffusion 

tensor is a 2nd order tensor that models a 3D pattern of anisotropic diffusion within the 

region of interest. The diffusion tensor, D, can be determined by a variation of equation 

1.2, in which you replace the ADC with D. 

𝑆𝑆 = 𝑆𝑆0𝑒𝑒�Σ𝑖𝑖=𝑥𝑥,𝑦𝑦,𝑧𝑧Σ𝑗𝑗=𝑥𝑥,𝑦𝑦,𝑧𝑧𝑏𝑏𝑖𝑖,𝑗𝑗𝐴𝐴𝑖𝑖,𝑗𝑗� 1.4 

and equation 1.3 is replaced with 

𝑏𝑏𝑖𝑖,𝑗𝑗 = γ2𝐺𝐺𝑖𝑖𝐺𝐺𝑗𝑗[δ2(Δ − δ/3)] 1.5 

D corresponds to the diffusion rates in each combination of directions and is represented 

by 

𝐴𝐴 = �
𝐴𝐴𝑥𝑥𝑥𝑥 𝐴𝐴𝑥𝑥𝑥𝑥 𝐴𝐴𝑥𝑥𝑥𝑥
𝐴𝐴𝑥𝑥𝑥𝑥 𝐴𝐴𝑥𝑥𝑥𝑥 𝐴𝐴𝑥𝑥𝑥𝑥
𝐴𝐴𝑥𝑥𝑥𝑥 𝐴𝐴𝑥𝑥𝑥𝑥 𝐴𝐴𝑥𝑥𝑥𝑥

� 1.6 

The tensor is ideally symmetric and therefore the off-diagonal elements of the matrix are 

equal. The six elements, �𝐴𝐴𝑥𝑥𝑥𝑥 ,𝐴𝐴𝑥𝑥𝑥𝑥 ,𝐴𝐴𝑥𝑥𝑥𝑥 ,𝐴𝐴𝑥𝑥𝑥𝑥,𝐴𝐴𝑥𝑥𝑥𝑥,𝐴𝐴𝑥𝑥𝑥𝑥�, describe the ADC of water for each 

direction. A common way to conceptualize the diffusion tensor is through ellipsoids as 

shown in figure 1.5. 
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Figure 1.5: Representation of diffusion tensor ellipsoids. The figure on the left 
represents isotropic diffusion, while the ellipsoid on the right represents an 

anisotropic diffusion. 

Diffusion tensor imaging (DTI) comprises a group of techniques where 

calculated eigenvalues (𝜆𝜆1, λ2,𝑎𝑎𝑎𝑎𝑎𝑎 λ3) and eigenvectors (ϵ1, ϵ2,𝑎𝑎𝑎𝑎𝑎𝑎ϵ3) are used to create 

images reflecting various diffusion properties of tissue. These eigenvectors can be 

calculated by diagonalizing D: 

Λ = �
λ1 0 0
0 λ2 0
0 0 λ3

� = 𝑅𝑅 ⋅ 𝐴𝐴 ⋅ 𝑅𝑅𝑇𝑇 1.7 

The diffusion tensor is rotated by the matrix R whose columns are composed of 

the eigenvectors of the system and 𝑅𝑅𝑇𝑇 is the transpose of the matrix R. The eigenvectors 

and eigenvalues describe the direction and lengths of the diffusion ellipsoid axes in 

descending order of magnitude. The primary eigenvector, ϵ1  and its associated 

eigenvalue λ1 designate the direction and magnitude of the greatest diffusion. The other 
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two eigenvectors are orthogonal to primary eigenvector and describe the radial 

diffusivity with a region[6][9]. Several rotationally invariant diffusion metrics can be 

calculated from the 3 eigenvalues and used to quantitatively track changes over time. 

The metrics called, "Diffusion Anisotropy Indices" (DAI) are single values that describe 

the microstructure within a voxel [6][7][9]. The DAIs can be visualized as seen in figure 

1.6.  

  

1.2.1 Apparent Diffusion Coefficient 

The apparent diffusion coefficient (ADC) also referred to as the average 

diffusivity of the media can be calculated by taking the average of the eigenvalues 

[6][9][10]. 

𝐴𝐴𝐴𝐴𝐶𝐶 =
λ1 + λ2 + λ3

3
= 𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡𝑒𝑒(𝐴𝐴)/3 1.8 

Figure 1.6: Top Row: A: The apparent diffusion coefficient map. B: The 
fractional anisotropy map. C: The relative Anisotropy Map. D: The volume fraction 
map. E: The axial diffusion map. F: The radial diffusion map. G: The lattice index 

map. H: The principal direction map 
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Measurement of the ADC may help understand how the diffusivity is changing 

over time or after radiotherapy. A low signal within an image signifies restricted 

diffusion within a region of interest. ADC maps are particularly useful for detecting 

damaged areas of the brain after a stroke or within brain tumors as these areas typically 

have low diffusion. 

1.2.2 Fractional Anisotropy 

 The Fractional Anisotropy (FA) is a dimensionless quantitative metric that 

measures the diffusion anisotropy or preferred direction of diffusion. The FA varies 

from 0 to 1, in which an FA of 0 represents isotropic diffusion while an FA of 1 

represents perfectly linear diffusion. The FA measures the degree of directionality with a 

voxel: 

𝐹𝐹𝐴𝐴 =
�(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2

�2�λ12 + λ22 + λ32
1.9 

and can also be related to the ADC by: 

𝐹𝐹𝐴𝐴 = �3
2
�(λ1 − 𝐴𝐴𝐴𝐴𝐶𝐶)2 + (λ2 − 𝐴𝐴𝐴𝐴𝐶𝐶)2 + (λ3 − 𝐴𝐴𝐴𝐴𝐶𝐶)2

�2�λ12 + λ22 + λ32
1.10 

1.2.3 Relative Anisotropy 

 Similar to the FA, the relative anisotropy (RA) also measures the diffusion 

asymmetry within a voxel and can be calculated by: 

𝑅𝑅𝐴𝐴 =
�(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2

λ1 + λ2 + λ3
1.11 
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and can also be related to the ADC by: 

𝑅𝑅𝐴𝐴 =
�(λ1 − 𝐴𝐴𝐴𝐴𝐶𝐶)2 + (λ2 − 𝐴𝐴𝐴𝐴𝐶𝐶)2 + (λ3 − 𝐴𝐴𝐴𝐴𝐶𝐶)2

√2ADC
1.12 

Both the FA and RA show different dependencies on λ1, although the measure the same 

physical quantity [11]. 

1.2.4 𝑫𝑫𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂 & 𝑫𝑫𝒓𝒓𝒂𝒂𝒓𝒓𝒂𝒂𝒂𝒂𝒂𝒂 

The axial and radial diffusivity are metrics that provide directional information 

within a scan. As mentioned before the principal eigenvector and eigenvalue designate 

the direction and magnitude of greatest diffusion. 

𝐴𝐴𝑎𝑎𝑥𝑥𝑖𝑖𝑎𝑎𝑎𝑎 = λ1 1.13 

The radial diffusivity can be determined by the average of 𝜆𝜆2 and 𝜆𝜆3: 

𝐴𝐴𝑟𝑟𝑎𝑎𝑟𝑟𝑖𝑖𝑎𝑎𝑎𝑎 = (λ2 + λ3)/2 1.14 

These values can be visualized by the axial diffusivity (𝐴𝐴𝑎𝑎𝑥𝑥𝑖𝑖𝑎𝑎𝑎𝑎). These values are used to 

demonstrate a more distinct relationship with the white matter tracts[7][12].   

1.2.5 Lattice Index 

 In an attempt to mitigate noise, the lattice anisotropy index (LI), may be used. LI 

is an anisotropy index that is affected by the degree of orientational consistency[13][14].  

The LI can be calculated by: 

𝐿𝐿𝐿𝐿 = (𝐹𝐹𝐴𝐴 + 𝐹𝐹𝐴𝐴2)/2 1.15 
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1.2.6 Principal Diffusion Direction Map 

The principal diffusion direction map assigns colors to voxels based on anisotropy and 

the primary direction. An RGB map is used to provide directional information and 

identify changes in WM tracts[6][7]. The typical convention is to have the principal 

eigenvector,ϵ1, control the color and the FA to control the intensity. Red typically 

represents the left-right direction, green represents the anterior-posterior direction, and 

blue represents the superior-inferior direction.
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2. Background 
This chapter provides a literature review for the distortion corrections intrinsic to DWI 

and registration techniques intended to improve upon these distortions. A large number 

of publications are currently available, the papers were reviewed for the following 

registration techniques.  

2.1 Distortions 

2.1.1 EPI Distortions 

Clinical DWI typically use single-shot EPI acquisitions that are sensitive to static 

magnetic field inhomogeneities, resulting in geometric distortions [15-20]. These 

distortions apply to all DWI and become more prominent with greater field strengths and 

appear pronounced along the phase encoding direction [15-20]. To be an effective tool in 

radiation therapy, EPI distortions need to be corrected before diffusion tensor calculation 

to accurately represent the anatomy and physiology within the image. 

2.1.2 Eddy Current Distortions 

Faraday-Lenz law states that electrical currents are induced in nearby conductors 

in a changing magnetic field [21]. Because DWI uses rapidly changing magnetic field 

gradients, eddy currents are induced in either the scanner or patient which warps the 

image and create two undesired occurrences: time-varying gradients and shifts in the 

main magnetic field (𝐵𝐵0). Eddy currents can result in higher ADC values along with 

geometric distortions. In diffusion-weighted EPI, eddy-current-induced gradients and 
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field shifts cause distinctive geometric distortions in the phase encoding direction of the 

resulting images [16,22-24]. Several techniques have been proposed to deal with eddy 

current distortions such as active shielding gradients [25], pre-emphasis currents and 

post-processing techniques[22]. For this study, we will be investigating several post-

processing techniques. 

2.2 Registration Methods 

The classification of the registration method is dependent on the technique used. 

For our study, we measure the best transformation based on the squared error, cross-

correlation, and mutual information between two images. Two categories of 

transformations are available to register images, rigid body model and deformable 

registration mode, but in this study, we chose to study the deformable registration 

techniques using the affine model, demons model and a Log Demons model [26,27]. 

2.2.2 Intensity-based Registration 

Intensity-based image registration uses grayscale information to directly measure 

how well the two images are registered [28,29]. The registration is scored by a similarity 

measure, that determines the similarity between the distributions of voxel values from a 

static and transforming image. The common similarity measures used clinically are the 

sum of squared error(SE), cross-correlation (CC), and Mutual information (MI). 
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2.2.2.1 Sum of Squared Error 

The squared error minimizes the sum of squares of the differences in intensity of 

images at corresponding pixel values. 

𝑆𝑆𝑆𝑆 = ��𝐿𝐿𝑖𝑖,𝑗𝑗
𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚 − 𝐿𝐿𝑖𝑖,𝑗𝑗

𝑡𝑡𝑎𝑎𝑟𝑟𝑚𝑚𝑡𝑡𝑡𝑡�
2

𝑖𝑖,𝑗𝑗

2.1 

The standard error is a computationally simple calculation that minimizes the 

sum of squares of differences between the intensity of images at corresponding pixel 

values, which is represented by the 𝐿𝐿𝑖𝑖,𝑗𝑗 variables for moving and target respectively. This 

method does have its limitations as it can only be used within the same imaging 

modalities. 

2.2.2.2 Cross-Correlation 

Another technique that has been used is the cross-correlation metric [29,30] that 

maximizes the correlation in the coincidence of image intensities. This method involves 

an assumption is that there is some linear relationship between the intensity values in the 

two images but may be used between dissimilar imaging modalities as long as the pixel 

intensities have the same relative order. 

𝐶𝐶𝐶𝐶 =
∑ (𝑥𝑥𝑖𝑖 − �̿�𝑥)(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)𝑖𝑖

(∑ (𝑥𝑥𝑖𝑖 − �̿�𝑥)2𝑖𝑖 )1/2(∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2𝑖𝑖 )1/2 2.2 

Where 𝑥𝑥𝑖𝑖 and 𝑦𝑦𝑖𝑖 are the pixel values and �̿�𝑥 and 𝑦𝑦�  and the average pixel values of 

the moving and target images respectively.  
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2.2.2.3 Mutual Information 

Mutual information maximizes the alignment of voxels whose values have 

common probabilities of being present in their respective image sets. MI can be used on 

images taken with dissimilar imaging modalities. Mutual information is particularly in 

radiation therapy because and MR acquisition may be able to better delineate the tumor 

but the CT is needed for dose calculation so MI is a common metric to register the two 

images [31]. 

𝑀𝑀𝐿𝐿(𝐴𝐴,𝐵𝐵) = �𝑝𝑝𝐴𝐴𝐴𝐴(𝑖𝑖𝑎𝑎, 𝑗𝑗𝑏𝑏) log2 �
𝑝𝑝𝐴𝐴𝐴𝐴(𝑖𝑖𝑎𝑎, 𝑗𝑗𝑏𝑏)
𝑝𝑝𝐴𝐴(𝑖𝑖𝑎𝑎)𝑝𝑝𝐴𝐴(𝑗𝑗𝑏𝑏)� 2.3 

Where 𝑝𝑝𝐴𝐴 is the probability distribution of the moving image (A), 𝑝𝑝𝐴𝐴 is the 

probability distribution of the target image (B), and 𝑝𝑝𝐴𝐴𝐴𝐴 is the joint probability 

distributions of the moving and target images. 

2.3 Geometric Models 

Based on geometric models, registration techniques are broken down into two 

categories, Rigid Transformations and Deformable Registrations (non-rigid) [32], in which 

a transformation, T, will be applied to the moving image to align with a static image. 

2.3.1 Rigid Transformations 

2.3.1.1 Rigid Body 

Rigid body registrations consist of a transformation involving three translation 

parameters and three rotation parameters.  
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2.3.1.2 Affine 

Rigid body transformations can be expanded to 9 to 12 parameters to allow for 

affine registration by adding three scaling parameters and three shear parameters[29]. 

2.3.2 Deformable Registration 

Deformable models have a different optimization criterion that is locally defined 

and computed and the deformation is constrained by a regularization term [33]. For this 

study, we focus on the demons and log demons deformable registration algorithms as 

described below.  

2.3.2.1 Demons 

The demons algorithm is based upon a thought experiment from James Clerk 

Maxwell in 1867 that suggested how the 2nd law of thermodynamics may be violated. 

Maxwell assumed a gas composed of two different particles and separated by a semi-

permeable membrane that contains ”demons” that can differentiate the particles and 

allow them to diffuse in one direction. The ”demons” allow for unidirectional diffusion 

of the particles resulting in only blue particles in A and red particles in B. 
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Figure 2.1: Depiction of Maxwell’s demons thought experiment in which a 
mixed gas of red and blue particles separate themselves across the membrane with 
demons 

Maxwell included the “demons” into the membrane to generate a greater amount of 

entropy to avoid any contradiction with the 2nd law of thermodynamics [34]. Thirion took 

this ideology and applied it to image registration to match a moving image to a target 

image by assuming the contour of an object in the moving image is the membrane, and 

“demons” are scattered along that membrane[34]. The relationship between the two 

images can be determined by the energy between them:  

𝑆𝑆(𝐹𝐹,𝑀𝑀, 𝑡𝑡, 𝑣𝑣) = ���
1
𝜎𝜎𝑖𝑖
𝐹𝐹 − 𝑀𝑀 ⋅ 𝑡𝑡���

2

+
1
𝜎𝜎𝑥𝑥2

𝑎𝑎𝑖𝑖𝑑𝑑𝑡𝑡(𝑣𝑣, 𝑡𝑡) +
1
𝜎𝜎𝑇𝑇2

𝑅𝑅𝑒𝑒𝑅𝑅(𝑣𝑣) 2.4 

In which F is the fixed image, M is the moving image, 𝜎𝜎𝑖𝑖   accounts for the noise on the 

image intensity, 𝜎𝜎𝑇𝑇2 controls the amount of regularization, 𝜎𝜎𝑥𝑥2 accounts for the spatial 
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uncertainty and c is the non-parametric spatial transformation[34,35]. The regularization 

term, 𝑅𝑅𝑒𝑒𝑅𝑅(𝑣𝑣) = �|∇𝑣𝑣|�
2 and the 𝑎𝑎𝑖𝑖𝑑𝑑𝑡𝑡(𝑣𝑣, 𝑡𝑡) = �|𝑡𝑡 − 𝑣𝑣|� are implemented to optimize the 

correlation between two images. The demons algorithm iteratively updates a 

displacement field, u by minimizing the energy with respect to u [34,35] which is applied 

to equation 2.4: 

𝑆𝑆𝑠𝑠𝑐𝑐𝑚𝑚𝑟𝑟𝑟𝑟 = �|𝐹𝐹 −𝑀𝑀 ⋅ 𝑣𝑣 ⋅ (𝐿𝐿𝑎𝑎 + 𝑢𝑢)|�2 +
σ𝑖𝑖2

σ𝑥𝑥2
�|𝑢𝑢2|� 2.5 

Where s is the current transform and 𝑑𝑑 ∗ (𝐿𝐿𝑎𝑎 + 𝒖𝒖)is a compositive adjustment.  

2.3.2.2 Log-Demons 

 The demons registration has been improved upon by Vercauteren in which the 

diffeomorphic transformation is related to the exponential map of the velocity field, v 

[27,36]. Diffeomorphic demons registration can be extended to represent a total spatial 

transform in the log-domain. The algorithm takes the ongoing transformations as an 

exponential of a velocity field v. The log-domain demons algorithm uses Lie group 

structures to relate diffeomorphic transformation φ to the exponential of the velocity 

field[27][36][37]. The calculation of energy in equation 2.4 is modified to work in the log-

domain by performing Gaussian smoothing in the log domain making 𝑎𝑎𝑖𝑖𝑑𝑑𝑡𝑡(𝑑𝑑, 𝑡𝑡) =

�|𝑙𝑙𝑙𝑙𝑅𝑅(𝑑𝑑−1 ⋅ 𝑡𝑡)|�𝑎𝑎𝑎𝑎𝑎𝑎 𝑅𝑅𝑒𝑒𝑅𝑅(𝑑𝑑) = �|Δ𝑙𝑙𝑙𝑙𝑅𝑅(𝑑𝑑)|�2.  Using this equation 2.4 then becomes 
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𝑆𝑆�𝐹𝐹,𝑀𝑀, 𝑒𝑒𝑥𝑥𝑝𝑝(𝑡𝑡), 𝑒𝑒𝑥𝑥𝑝𝑝(𝑣𝑣)� =
1

2𝜎𝜎𝑖𝑖2
�𝑆𝑆𝑖𝑖𝑆𝑆�𝐹𝐹,𝑀𝑀 ⋅ exp(c)� + 𝑆𝑆𝑖𝑖𝑆𝑆(𝐹𝐹 ⋅ 𝑒𝑒𝑥𝑥𝑝𝑝(−𝑡𝑡),𝑀𝑀)� 

+
1
𝜎𝜎𝑥𝑥2

𝑎𝑎𝑖𝑖𝑑𝑑𝑡𝑡(𝑡𝑡, 𝑣𝑣)2 +
1
𝜎𝜎𝑇𝑇2

𝑅𝑅𝑒𝑒𝑅𝑅(𝑣𝑣) 2.6 

Where 𝜎𝜎𝑥𝑥,𝑇𝑇
2  control the step size and regularization and 𝜎𝜎𝑖𝑖2 controls the deformations of 

the image geometry[27,34,35]. 

2.3.3 Objectives of Thesis 

The goal of this thesis is to evaluate Eddy-current distortion and EPI distortion 

corrections in the phase encoding direction in MR diffusion imaging using a log-demons 

DIR method with a phantom study and the massive dataset. 
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3. Correction of MR Distortions 

3.1 Materials and Methods 

Correction of eddy current distortions and EPI distortions using the log-demons 

algorithm involved taking advantage of different MR acquisition sequences. Because 

eddy current distortions are dependent on the strength and direction of the diffusion 

gradient [3,23,24,38], we take advantage of the fact that the 𝒃𝒃 = 𝟎𝟎𝟎𝟎/𝒎𝒎𝒎𝒎𝟐𝟐 images should 

not have any eddy-current distortions and only EPI distortions. T1 weighted images do 

not have any EPI distortions and are therefore used as an anatomical landmark when 

correcting these distortions.  Registering the 𝒃𝒃 = 𝟎𝟎𝟎𝟎/𝒎𝒎𝒎𝒎𝟐𝟐 and 𝒃𝒃 = 𝟏𝟏𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎/𝒎𝒎𝒎𝒎𝟐𝟐 to the T1 

weighted image would correct for any EPI and eddy-current distortions present. Here we 

describe several techniques to test the efficacy of the log-demons registration technique 

for its ability to preserve anatomical and functional information. 

3.1.1 Diffusion Standard Model 128 

In order to study the efficacy of the log-demons registration algorithm, we took  

Diffusion Standard Model 128 phantom[1] scans involving a T1 weighted scan, one 𝑏𝑏 =

0𝑑𝑑/𝑆𝑆𝑆𝑆2 scan and twenty diffusion-weighted data sets with 𝑏𝑏 = 1,000𝑑𝑑/𝑆𝑆𝑆𝑆2. The 

phantom's main components consist of 30mL vials of polymer in aqueous solution. 
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Figure 3.1: Depiction of the Diffusion Standard Model 128[1] phantom used to 
study the effects of eddy current and EPI distortions. 

We rigidly register the T1 weighted image to the DWI, before applying any other 

registration technique to the images. For the diffusion tensor imaging (DTI) data set, slices 

were selected based on geometric landmarks and each registration algorithm was 

performed on the slices. A log-demons deformable registration algorithm was applied to 

a 2D slice and compared to affine and demons registration algorithms. Because these 

distortions mainly occur in the phase encoding direction, the transformations were only 

applied to the PE direction. The registered images were analyzed using mutual 

information (MI) for the algorithm’s ability to correct eddy current and EPI deformations. 

The phantom contains thirteen vials of differing viscosity to study the differences in 

diffusion.  

We tested the algorithms’ ability to preserve information and image quality using 

the mean, and root mean square (RMS) for thirteen regions of interest (vials) in the 

Apparent Diffusion Coefficient (ADC) and Fractional Anisotropy (FA) maps. 
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Figure 3.2: T1 weighted slice of the Diffusion phantom used with each of the 
vials numbered for reference. 

3.1.2 MASSIVE dataset 

The MASSIVE (Multiple Acquisitions for Standardization of Structural Imaging 

Validation and Evaluation) dataset [20] is a brain dataset of a single healthy patient 

consisting of 8000 diffusion-weighted MR volumes. We aim to expand upon our simplistic 

analysis of the performance of the log-demons algorithm using the diffusion phantom by 

using the MASSIVE data set. The MASSIVE data set provides diffusion-weighted volumes 

divided into four sets with both positive (+) and negative(-) diffusion gradient directions 

and both AP and PA phase encoding directions as seen in figure 7. To test the algorithms 

ability to correct eddy current distortions we register the AP+ and AP- 𝑏𝑏 = 1000𝑑𝑑/𝑆𝑆𝑆𝑆2 

images to the 𝑏𝑏 = 0𝑑𝑑/𝑆𝑆𝑆𝑆2 image. A perfect registration/intensity correction algorithm 

would return identical image volumes after registering the distorted images to the b0 
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volume. We also compared the difference maps of the AP+ and AP- images after 

registration by the affine, demons, and log-demons algorithm. A similar technique is used 

to correct EPI distortions except the registrations were applied the AP+ and AP-          

𝑏𝑏 = 0𝑑𝑑/𝑆𝑆𝑆𝑆2 images to the T1-weighted image. 

 

Figure 3.3: Representative images for the different sequences used in the 
MASSIVE dataset (AP+, AP-, PA+, PA-). The yellow arrow demonstrates the EPI 

distortions along the phase encoding direction present in the globes. The blue arrow 
demonstrates the intensity and shape of the changes due to eddy current distortions. 

3.1.3 Methods 

All image registration and diffusion tensor calculation are performed using 

MATLAB 2019a [39]. All registration algorithms were tested by correcting deformations 

in only the phase encoding direction.  
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4. Results 
To validate the registration systems, three experiments were conducted using 

various datasets. The tests were conducted using MATLAB 2019a on a Dell XPS 15 9560 

PC with a Windows 10 OS.  The registration techniques demonstrated in this chapter are 

the affine registration, demons deformable registration, and log-demons deformable 

registration. 

 4.1 Phantom Study 

4.1.1 Eddy Current Distortion 

Correction for the eddy current distortions within the phantom involves registering the 

𝑏𝑏 = 1000𝑑𝑑/𝑆𝑆𝑆𝑆2 to the 𝑏𝑏 = 0 𝑑𝑑/𝑆𝑆𝑆𝑆2 and analyzing using equations 2.1 – 2.3 to evaluate 

the similarity between the average of twenty 2D slices.    

Table 1: Similarity measures for the eddy current distortion correction in the 
phase encoding direction 

Correction 
Method 

No 
correction Affine PE Demons PE Log Demons PE 

MSE 633740 634630 6.13E+05 620630 
CC 0.7515 0.7518 0.6745 0.7523 
MI 1.9976 2.0255 1.4961 2.0148 

 

4.1.2 EPI Distortion 

Correction for the eddy current distortions within the phantom involves registering the 

𝑏𝑏 = 0 𝑑𝑑/𝑆𝑆𝑆𝑆2  to the T1-weighted image and analyzing using equations 2.1 – 2.3 to 

evaluate the similarity between the two images.  
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Table 2:  Similarity measures for EPI Distortion correction in both the phase 
and frequency encoding direction 

Correction 
Method 

No 
correction Affine PE Demons PE Log Demons PE 

MSE 633740 634630 6.13E+05 620630 
CC 0.8445 0.8054 0.8398 0.8737 
MI 1.266 1.2609 1.2624 1.3429 

 

4.1.3 Diffusion Tensor Analysis 

 The twenty 𝑏𝑏 = 1000𝑑𝑑/𝑆𝑆𝑆𝑆2 slices were first registered to the 𝑏𝑏 = 0𝑑𝑑/𝑆𝑆𝑆𝑆2  to 

remove eddy current distortions and then registered to the T1-weighted slice to correct 

any EPI distortions. The 𝑏𝑏 = 0𝑑𝑑/𝑆𝑆𝑆𝑆2 slice was registered to the T1 weighted image to 

correct any EPI distortions. The ADC and FA were then calculated in MATLAB using 

the registered  𝑏𝑏 = 1000𝑑𝑑/𝑆𝑆𝑆𝑆2 slices and 𝑏𝑏 = 0𝑑𝑑/𝑆𝑆𝑆𝑆2 slice. Distortion correction and 

preservation of the images can be shown below in figure 4.1. 

 

 

Figure 4.1: ADC (top) and FA(bottom)maps of the diffusion 
phantom to compare the integrity of the registration techniques in the 

phase encoding direction 
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The values were taken from each cylinder (see figure to determine similarity to 

the original ADC and FA image.  

Table 3:  ADC data from each of cylinder within the diffusion phantom for the 
images transformed in only the phase encoding direction in mm2/s 

 No Correction Affine PE Demons PE Log-Demons PE 
cylinder 1 0.001001 0.001069 0.001034 0.001000 
cylinder 2 0.001386 0.001503 0.001366 0.001382 
cylinder 3 0.000994 0.001024 0.001005 0.000995 
cylinder 4 0.001816 0.001818 0.001805 0.001814 
cylinder 5 0.001373 0.001357 0.001381 0.001375 
cylinder 6 0.002259 0.002202 0.002294 0.002259 
cylinder 7 0.000670 0.000613 0.001136 0.000670 
cylinder 8 0.000669 0.000660 0.000763 0.000670 
cylinder 9 0.001787 0.001756 0.001795 0.001787 
cylinder 10 0.002268 0.002217 0.002327 0.002268 
cylinder 11 0.002299 0.002258 0.002345 0.002298 
cylinder 12 0.000417 0.000425 0.000711 0.000417 
cylinder 13 0.000417 0.000381 0.000998 0.000415 

 

Table 4: The average, standard deviation, and root mean squared error of the 
percent difference of the original ADC value  in the phase encoding direction of the 

registered image  

 Affine PE Demons PE Log- Demons PE 
Average  3.73% 16.34% 1.75% 
STD Dev 4.97% 27.37% 2.67% 
RMS 4.83% 30.80% 2.58% 
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Table 5: FA data from each of cylinder within the diffusion phantom for the 
images transformed in only the phase encoding direction 

 
No 
Correction Affine PE Demons PE Log Demons PE 

cylinder 1 0.02168 0.04316 0.03378 0.02116 
cylinder 2 0.02597 0.04905 0.03336 0.02587 
cylinder 3 0.02304 0.03882 0.02978 0.02265 
cylinder 4 0.02501 0.03241 0.02604 0.02468 
cylinder 5 0.01966 0.03187 0.02144 0.01941 
cylinder 6 0.01928 0.02054 0.02206 0.01884 
cylinder 7 0.03867 0.06319 0.12093 0.03864 
cylinder 8 0.03166 0.05189 0.05680 0.03130 
cylinder 9 0.01889 0.01986 0.02005 0.01859 
cylinder 10 0.02066 0.02075 0.02460 0.02048 
cylinder 11 0.02093 0.02085 0.02685 0.02070 
cylinder 12 0.04572 0.05342 0.09151 0.04546 
cylinder 13 0.05380 0.06737 0.11925 0.05380 
 

Table 6: The average, standard deviation, and root mean squared error of the 
percent difference of the original FA value in the phase encoding direction of the 

registered image  

 Original Affine PE Demons 
PE 

Log 
Demons PE 

Average  0.00% 30.66% 36.20% 11.67% 
STD Dev 0.00% 24.12% 30.82% 11.40% 
RMS 0.00% 55.32% 60.17% 33.01% 

 

4.2 MASSIVE Data 

The massive data was implemented to test the log-demons algorithm’s ability to 

correct DW distortions in brain scans. Three slices within the DWI volume were 
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randomly chosen and the affine, demons, and log-demons algorithms were applied to 

images in an attempt to correct for DWI distortions. 

4.2.1 Eddy Current Distortion 

To test the algorithm’s ability to correct eddy current distortions, the AP+ and 

AP- b=1000s/mm2 images were registered to the AP b = 0s/mm2 image.  

 

 

 

Affine 

Demons 

Original 

Log-Demons 

Figure 4.2: A representation of the DWI images and the 
difference map of the DWI images with opposing diffusion 

weighting gradients 
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Table 7:  Mutual information from the corrected AP+ or AP- b=1000s/mm2 

image and b=0s/mm2 image after correction applied along PE direction . 

  Original  Affine PE Demons PE Log-Demons PE 
Mutual 
Information 1.1373   1.1568 1.1433 1.1525 

 

Table 8: The average absolute difference from corrected AP+ and AP- 
b=1000s/mm2 image after correction applied along PE direction. 

  Original  Affine PE Demons PE Log-Demons PE 
Absolute Difference  38.4051 37.4424 37.8538 37.2936 

 

4.2.2 EPI Distortion 

To test the algorithm’s ability to correct eddy current distortions, the AP+ and 

PA+  b=0s/mm2 images were registered to the T1-weighted image.  
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Table 9: Mutual information from the PE registered b=0s/mm2 image and T1-
weighted image. 

  Original  Affine PE Demons PE Log-Demons PE 
Mutual Information 0.8141 0.8661 0.8194 0.8193 

 

Table 10: The average absolute difference from Corrected b=0s/mm2 image and 
the T1-weighted image after correction applied along PE direction 

  Original  Affine PE Demons PE Log-Demons PE 
Absolute Difference 185.2624 200.6604 212.5919 184.5481 

Affine 

Original 

Demons 

Log-Demons 

Figure 4.3:   A representation of the registered b=0s/mm2 images and 
the difference map of the DWI images with opposing diffusion weighting 

gradients 
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5. Discussion 
5.1 Phantom Study 

The log-demons algorithm has comparable results with the affine registration 

method that is commonly used to correct for eddy current distortions in diffusion 

imaging. As for the EPI distortion correction, the log demons algorithm more easily 

corrects larger scale deformations. The MI and CC were improved by, 2.15%, 0.89%, and 

39.39% compared to no correction, affine, and demons algorithm respectively when 

correcting for eddy current distortions. MI and CC were improved by 8.89%, 9.33%, and 

9.20% compared to no correction, and affine, and demons algorithm respectively when 

correcting for EPI distortions.  This difference in effectiveness may be due to the 

algorithm's ability to contour the deformations. Because eddy current distortions are 

smaller in magnitude, the log-demons algorithm cannot accurately create the contour to 

show drastic improvement over the affine registration. 

The log-demons algorithm outperformed both the affine and demons registration 

techniques in preserving diffusion tensor information as seen in tables 3-6 and figure 4.1. 

The average percent difference of the ADC and FA for the log-demons registration 

technique was substantially better for corrections in the phase encoding direction when 

compared to affine and demons registration techniques. Limiting the registration to the 

phase encoding direction yields a more accurate result, which is expected as both 

distortions primarily occur in the phase encoding direction. 
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Figures 4.1 and 4.2 provide a visualization of the performance of the algorithms. 

In the ADC images, the largest difference can be seen towards the edges of the cylinders 

and the phantom. As DWI becomes more prevalent in radiation oncology, distortion 

correction techniques will provide a better understanding of the anatomy and its 

function. The log-demons algorithm provides an image registration technique that can 

mitigate geometric and intensity distortions that affect the diffusion tensor.  There is a 

noticeable difference in the affine and log-demons algorithms towards the bottom of the 

phantom. Preservation of the diffusion tensor imaging is especially important when 

examining regions undergoing radiation treatment to ensure any changes in the region 

are due to radiation and not caused by geometric deformations.   Because the phantom 

is filled with water, we expect the diffusion to be fairly isotropic, which is why there is 

little signal from the FA maps. The FA maps of the affine and demons registered images 

are relatively brighter than the log-demons registered image. This visual analysis is a 

quick and simple method to ensure a deformation technique is preserving sensitive 

information. The diffusion phantom model 128 has provided a solid baseline in 

determining the efficacy of the log-demons algorithm and the rationale to apply these 

images to brain scans. 

5.2 MASSIVE Data 

The massive dataset provides useful information for benchmarking new 

algorithms involved in correcting eddy current and EPI distortions. The MASSIVE 



www.manaraa.com

 

34 

dataset offers another metric to measure distortion corrections and an image 

registration’s effectiveness. When correcting for EPI distortions, registering both the AP+ 

and AP- b=1000s/mm2 images to a b=0s/mm2 images the difference map of the two 

registered images provides a new metric to analyze distortion correction algorithms. An 

ideal correction would yield a zero-difference map. Surprisingly the algorithm that 

produced the highest MI did not yield the lowest average absolute difference.  

When examining the EPI distortion corrections in tables 7 - 10 the log-demons 

algorithm improves the distortions as seen by the increase in MI and a decrease in 

average absolute difference. The average absolute difference decreased by 0.39%, 8.03%, 

and 13.19% compared to no correction, and affine, and demons algorithm respectively 

when correcting for EPI distortions. In figure 5.4 the difference map of the registration 

algorithms, the log-demons algorithm appears to have the least sharp contrast at the 

edges of the images. Through an assessment of the MI similarity metric and taking 

advantage of the physical principles of MR distortions, we are able to demonstrate the 

log-demons algorithm’s ability to correct the eddy current distortions and EPI 

distortions intrinsic to DWI imaging. Although the algorithm has been shown to work in 

diffusion-tensor brain scans, the log-demons method could be extended for areas in 

which diffusion-weighted imaging is beneficial. 
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6. Conclusion 
The research was focused on the development of a deformable registration 

algorithm to aid in the improvements of eddy current and EPI distortions without 

requiring an atlas.  Using the log-demons algorithm and the similarity metrics, cross-

correlation and mutual information we examined the log-demons algorithm to correct 

the distortions intrinsic to DTI, but also the preserve functional information DTI has to 

offer. 

The proposed method allows for the correction of eddy current distortions and 

EPI distortions without requiring any preprocessing.  By taking advantage of the log-

demons ability to minimize the energy between two images and mitigate the distortions 

within the image. The algorithm outperformed the affine and demons registrations in 

correcting both eddy current and EPI distortions in the phase encoding direction and 

also preserving DTI information. When undergoing a study involving DTI analysis, 

measures should be taken to ensure that the information is being preserved if applying a 

transformation. The log-demons algorithm delivers an accurate correction for DTI that 

can provide a non-invasive measurement of treatment response. Although 

demonstrated with a DTI phantom study and the MASSIVE dataset, this method could 

be extended for areas in which diffusion-weighted imaging is beneficial.  

This study may be limited in its structure as the MASSIVE dataset was taken 

with only one patient. Both the phantom study and MASSIVE dataset were acquired 
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using a smaller field of view when compared to other clinical DWI scans. Scans with a 

larger field of view have greater geometric distortions due to the non-linearity of the 

gradient applied in the phase encoding direction. To further strengthen the study, 

similar techniques may be applied to clinical brain scans to ensure the algorithm 

performs consistently across multiple patients. Further testing with scans involving a 

larger field of view may provide  definitive evidence for the algorithm’s performance.  
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